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Abstract— Hand-eye calibration plays a fundamental role
in robotics by directly influencing the efficiency of critical
operations such as manipulation and grasping. In this work,
we present a novel framework, EasyHeC++, designed for fully
automatic hand-eye calibration. In contrast to previous methods
that necessitate manual calibration, specialized markers, or the
training of arm-specific neural networks, our approach is the
first system that enables accurate calibration of any robot arm
in a marker-free, training-free, and fully automatic manner.
Our approach employs a two-step process. First, we initialize
the camera pose using a sampling or feature-matching-based
method with the aid of pretrained image models. Subsequently,
we perform pose optimization through differentiable rendering.
Extensive experiments demonstrate the system’s superior accu-
racy in both synthetic and real-world datasets across various
robot arms and camera settings. The code will be publicly
available upon the publication of this paper.

I. INTRODUCTION

Hand-eye calibration is a fundamental problem in robotics.

It connects the vision system and the robot arm system by

transforming the perception of the camera into the robot’s

coordinate system. This is crucial for many robotic appli-

cations, such as robotic grasping [1], [2], robotic manipula-

tion [3], [4], and robotic assembly [5].

Traditionally, the hand-eye calibration problem is ad-

dressed by using a marker [6], [7], [8] to assist computing the

camera pose by solving a AX =XB or AX =Y B equation [7],

[8], [9], [10], [11]. These methods not only necessitate the

placement of a high-quality marker in the scene but also

require the manual selection of a series of joint poses. This

manual process is time-consuming, and not user-friendly,

thereby restricting their applicability in real-world lab and

household scenarios.

Recently, learning-based methods have been proposed to

address the hand-eye calibration problem. These methods

typically involve employing a neural network to either di-

rectly regress the camera pose [12], [13] or detect keypoints

of the robot arm [14], [15], [16], followed by solving

the camera pose using the Perspective-n-Point (PnP) algo-

rithm [17]. The performance of these methods is limited by

the quality and quantity of the training data. Moreover, one

trained model can only be applied to a single type of robot

arm. If the need arises to calibrate a different type of robot

arm, it requires starting the process again, which involves

collecting new data and training a new model.

Recent works [18], [19] propose to use differentiable

rendering to optimize the camera pose with a pixel-wise
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Fig. 1: Comparison between our method and previous

methods. Our method not only delivers high accuracy but

also is fully automatic, marker-free, and training-free.

mask loss and deliver superior accuracy. These methods get

rid of accurate marker placement and intricately selected

joint poses, thus highly suitable in household scenarios,

especially when re-calibration is needed at deployment time.

However, they still require a rough pose as initialization

and a mask as supervision. The mask segmentation network

requires training for each type of robot arm. In addition,

the pose initialization is either manually set or obtained by

another neural network. Both factors have increased human

efforts and training costs, prohibiting these methods from

being fully automatic and widely adopted.

In this paper, we introduce EasyHeC++ offering the fol-

lowing features:

• Accurate (3mm error) and fully automatic hand-eye

calibration system.

• The first method without any training cost or manual

annotation for any type of robot arm.

• Fast setup, 15 minutes for a new robot arm, and 5

minutes for re-calibration.

• Both eye-to-hand and eye-in-hand configurations are

supported.

Our core idea is to integrate the outstanding generalization

abilities of pre-trained image models with the precision

derived from the differentiable-rendering-based pose opti-

mization. This innovative design simplifies the prerequisites



by requiring only a real robot arm, a camera, and the

robot arm model. Consequently, this approach significantly

diminishes human intervention and training costs, rendering

our method more practical for real-world applications.

Our framework consists of two main components: 1) pose

initialization and 2) pose optimization. In the pose initial-

ization phase, we utilize either a sampling-based method

or a feature-matching-based method to initialize the camera

pose for the initial calibration and subsequent re-calibrations,

respectively. The sampling-based initialization selects a pose

from a set of densely sampled camera poses on a hemisphere.

We then refine this pose using differentiable rendering under

the supervision of the masks generated by a text-prompted

segmentation model [20]. On the other hand, the feature-

matching-based initialization leverages the historical cali-

brated image-pose pairs to infer an initial camera pose. These

methods, in contrast to training a neural network or manually

setting the camera pose, provide a more automatic approach

and are not constrained by the type of robot arm. Next, in

the pose optimization phase, we follow the methods outlined

in [19], which optimizes the camera pose with a pixel-wise

mask loss and uses a space exploration module to search

for the most informative joint pose, yielding more precise

calibration results. In this phase, the mask supervision is gen-

erated by a pre-trained open-world segmentation model [21],

using the projected robot arm model as prompts. Leveraging

the kinematics model of the robot arm to guide the pretrained

image models fully capitalizes on their generalization ability

and allows us to generate an accurate mask without the

need for any manual prompt annotation or training tailored

to a specific type of robot arm. After the camera pose is

solved, we incorporate the calibrated image-pose pair into

the database. This information will serve as the reference

for pose initialization in subsequent re-calibrations using the

feature-matching-based method.

We evaluate the proposed method across various types of

robot arms in synthetic and real-world scenes. The results

demonstrate that our method outperforms all the previous

methods in terms of accuracy and automation under both eye-

to-hand and eye-in-hand settings. To the best of our knowl-

edge, this is the first work that achieves fully automatic hand-

eye calibration, eliminating the necessity for training, manual

annotation, or markers. In a commitment to contribute to the

robotics community, we are dedicated to open-sourcing our

system for wider accessibility and benefit.

II. RELATED WORK

A. Hand-Eye Calibration

Hand-eye calibration is the problem of obtaining the

transformation matrix between the camera and the robot

reference frames, which involves two camera settings: eye-

to-hand calibration and eye-in-hand calibration. In eye-to-

hand calibration, the camera is stationary relative to the robot

base. Conversely, for eye-in-hand calibration, the camera is

stationary relative to the robot’s end-effector.

Traditional methods. Traditional methods employ a marker

to solve AX=XB hand-eye formulation for eye-to-hand cal-

ibration [7], [8], [9], [10] or AX=YB robot-world-hand-eye

formulation for eye-in-hand calibration [22]. Several recent

approaches have integrated these formulations with active

next-best-view selection to make the calibration process more

automated and precise. Zhang et al. [23] proposed an online

estimated discrete viewing quality field to represent the

calibration quality of selected camera views. Yang et al. [24]

introduced uncertainty reduction to guide the robot pose

selection. However, these approaches are highly affected by

the visibility and quality of the markers, which limits their

applicability and increases the difficulty for users to utilize

them.

Learning-based methods. Recent works proposed learning-

based or marker-free methods to solve hand-eye calibration.

For eye-to-hand setting, DREAM [15] introduced a two-step

framework, which first utilizes a deep neural network to

detect 2D projections of keypoints from the RGB image

of the robot, and then recovers the camera poses using

Perspective-n-Point (PnP) algorithm [17]. Similarly, Lu et

al. [16] proposed to first find the optimal set of keypoints

on the robot through an iterative approach using DNNs, and

subsequently to estimate pose utilizing the PnP algorithm.

Optimization-based methods. Recently, Lu et al. [18] pro-

posed to use differentiable rendering to optimize the camera

pose with a pixel-wise mask loss as the objective function.

EasyHeC [19] further designed an uncertainty-based space

exploration module to search for the next best informative

joint pose for more accurate calibration results for the eye-

to-hand setting. For the eye-in-hand setting, Valassakis et

al. [12] trained a simple neural network and directly re-

gressed the camera pose from images captured by a mounted

camera. For both eye-to-hand and eye-in-hand settings, Li

et al. [13] proposed to detect the robot base and align it

with a point cloud to compute the camera pose. All the

existing methods either necessitate manual calibration with

specialized markers or require the training of arm-specific

neural networks. As a comparison, we are the first hand-eye-

calibration system in a marker-free, training-free, and fully

automatic manner.

Difference from EasyHeC Our method is built upon Easy-

HeC, however, there are several key differences. (1) EasyHeC

requires mask and pose networks re-training for each new

type of robot arm, while our method is training-free and can

be applied to any robot arm. (2) EasyHeC is designed only

for one-time calibration, while we support fast recalibration

after a camera repositioning. (3) EasyHeC only supports the

eye-to-hand setting, while we also support the eye-in-hand

setting.

B. Visual Localization

Visual localization is an important computer vision task

that aims to estimate the camera pose of a new image given a

known scene representation. The scene is usually represented

as the reconstruction results of Structure-from-Motion [25]

using feature-matching-based methods [26], [27]. Then the



core problem of visual localization becomes finding the

correspondences between the pixels in the 2D image and

the 3D points in the scene. HLoc [28] proposed to address

the visual localization problem by image retrieval and lifting

2D-2D matchings to 2D-3D matchings in a coarse-to-fine

manner. OnePose [29] proposed to first reconstruct a semi-

dense point cloud representation for the 3D object and then

train a neural network to directly match the 2D pixel to

the 3D point cloud. OnePose++ [30] proposed to substitute

the COLMAP [25] with a learning-based feature matching

approach [31] to improve the performance on textureless

objects. However, these methods are not suitable for our sce-

narios. The reconstruction in their methods has no canonical

space, whereas the robot arm has a pre-defined canonical

space. Moreover, the robot arm has a known object shape,

making aligning them highly reliant on the reconstructed

shape quality and camera pose accuracy. The most relevant

work in this field is MeshLoc [32], which proposed to use a

mesh-based representation to avoid feature matching between

database images. In terms of hand-eye calibration, the robot

mesh is usually off-the-shelf and can be easily obtained.

C. Image Models for Segmentation

Traditional learning-based methods using networks

like [33], [34] are largely confined by their generalizability

in tasks and data distributions beyond those seen during

training. In our task, as we aim to segment the highly-

articulated robotic arm, those models require us to collect

extra robot arm images for training, which is laborious.

The current trend in large vision language models like

Segment Anything (SAM) [21] has enabled precise zero-

shot image segmentation. Boosted by its scaled model

size and abundant text corpora from the web, SAM [21]

and its follow-up works [21], [35], [36], [37] dominate

image segmentation by its superiority in quality, speed, and

generalizability. Another virtue of large vision language

models is they are designed and trained to be promotable.

Grounded-Segment-Anything [20] further broadens the

scope of the application by supporting image, text, and

speech inputs. In our pipeline, we use the kinematics model

of the robotic arm to guide the SAM model [20] to generate

masks without the need for manually labeled prompts.

III. METHODS

A. Background

In this work, we aim to address the hand-eye calibration

problem under two settings: eye-to-hand calibration and eye-

in-hand calibration. We represent the relative pose between

the camera and the robot base as Tcb and the relative pose

between the camera and the end-effector as Tce.

Our method is built on EasyHeC, which addresses the

eye-to-hand calibration problem iteratively. Each iteration in-

cludes two main components: differentiable-rendering-based

camera pose optimization and consistency-based joint space

exploration. The differentiable-rendering-based optimization

uses a pixel-wise rendering mask loss to optimize the camera

pose Tcb as follows:

L(ξcb) =

(

min

(

1,∑
l

π (exp(ξcb)Tbl l)

)

−M

)2

, (1)

where ξcb ∈ se(3) is the exponential coordinate of the relative

pose between the camera and the robot base, π is a differ-

entiable mask renderer, Tbl is the relative pose between the

base link and the link l, computed from forward kinematics,

and M is the observed mask, inferred from the RGB image

captured by the camera c.

After the optimization of each iteration, the consistency-

based joint space exploration is performed. This process

samples a bunch of joint poses in the simulator and identifies

the most informative one to improve the accuracy of the

calibration results. Then, the robot arm moves to the next

joint pose and the optimization process is performed again

on all the collected images. This process is repeated until the

number of iterations reaches a pre-defined maximum number.

We call this number of iterations as the space exploration

iterations in the following sections. To learn more details,

please refer to [19].

B. Overview

As shown in Fig. 2, EasyHeC++ aims to solve the hand-

eye calibration problem in a fully automatic manner. Notably,

we address not only the first-time calibration but also the

subsequent re-calibration after the camera movement. At

each time of calibration, we first initialize the camera pose

either via a sampling-based method (Sec. III-C.1) or a

feature-matching-based method using the existing image-

pose pairs in the database (Sec. III-C.2). Next, we perform

the pose optimization in the same way as EasyHeC, using

differentiable-rendering-based optimization and consistency-

based joint space exploration. The main difference is that

we design an AutoSAM module to automatically predict

segmentation masks (Sec. III-D) as the supervision. After

each time of calibration, the image-pose pair is added to the

database as the reference images for the initialization in the

subsequent re-calibrations. We use eye-to-hand calibration

as the default setting in Sec. III-C and Sec. III-D and finally

discuss the eye-in-hand calibration in Sec. III-E.

C. Automatic Pose Initialization

The hand-eye-calibration accuracy is highly dependent

on the quality of the pose initialization. In the previous

work [19], the pose initialization is obtained by a neural

network. The network has to be trained on synthetic data

and fine-tuned on real data for each type of robot arm,

which may suffer from the sim-to-real domain gap and not

be user-friendly due to the additional effort of per-arm data

annotation and training. In this work, we aim to initialize the

pose in an automatic and training-free manner.

1) Sampling-based Pose Initialization: Given a robot arm

that has never been calibrated before, we aim to estimate

an initial camera pose T init
cb for the following differentiable-

rendering-based pose optimization process.
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Fig. 2: EasyHeC++ architecture. We consider not only single-instance calibration but also recalibration after camera

movement. At each time of calibration, EasyHeC++ consists of two main components: pose initialization and pose

optimization. At the first time of calibration, we use a sampling-based pose initialization module to initialize a rough camera

pose T init
cb , while in subsequent re-calibrations, we use a feature matching (FM)-based module to initialize the camera pose,

using the historical image-pose pairs in the database. Then we run pose optimization by first using a differentiable renderer

(DR) to optimize the camera pose and then running a space exploration (SE) to obtain the next joint pose to increase the

accuracy. In this process, AutoSAM is proposed to predict mask as the supervision to the DR process. After solving the

camera pose Tcb, we add the image-pose pair to the database.

The basic idea is to generate segmentation masks using the

large segmentation model, GroundedSAM [20], with “robot

arm” as the text prompt and enumerate the camera poses

to find the one with the highest similarity to the observed

mask. Concretely, we sample a bunch of camera poses on a

hemisphere as in Fig. 2. Then we render the robot arm model

to obtain the rendered mask and compute the mask IoU

between the rendered and observed masks for each camera

pose. Then we select the camera pose with the highest mask

IoU and further refine it using differentiable rendering in

Eq. 1 to obtain the final initial pose T init
cb , where the mask

predicted by GroundedSAM is used to compute the mask

loss.

In practice, the process of sampling different joint poses

is only required for the first time. In the subsequent re-

calibrations, we adopt the feature-matching-based initializa-

tion introduced in the next subsection, which only requires

a single joint pose as input.

2) Feature-Matching-based Pose Initialization: As shown

in Fig. 2, after each time of calibration, we update the

database with the image at the initial joint pose and the

solved camera pose. When re-calibration is needed due to

the camera movement, we utilize the existing image-pose

pairs to initialize the camera pose via a feature-matching

technique as in [32].

Specifically, for an image-pose pair {Ir,T r
cb} in the

database, we can obtain {pr,Pc} as the correspondences

between the 2D pixels and the 3D point cloud in the

robot arm canonical space. Then, given the target image It ,

we can adopt a pre-trained dense feature-matching network

to predict the pixel correspondences {pr, pt} between the

reference image Ir and the target image It . Then the 2D-

2D correspondences are lifted to 2D-3D correspondences

{pt ,Pc} to solve the camera pose T t
cb.

Benefiting from the nature of the feature-matching net-

work which operates on local patches, this method is not

restricted by the type of robot arm and is thus fully automatic.

D. Automatic Segmentation Prediction

Predicting an accurate segmentation mask of the robot

arm plays a crucial role in the differentiable-rendering-based

optimization process since its quality directly impacts the

resulting calibration accuracy. Previous methods [18], [19]

train neural networks [38], [34] to predict this segmentation

mask, which is not only time-consuming but also restricted

to a specific type of robot arm. The recent large vision

language models [36], [37], [21], [20] have shown impressive

performance in the open-world image segmentation task, but

they either require a manual prompt as input [36], [21] or

deliver inferior mask predictions [20].

In this work, we design a module called AutoSAM, which

uses the kinematics model of the robot arm as a guide to

SAM [21] to generate the masks in a fully automatic and



training-free manner. The basic idea is to use the initialized

camera pose or the optimized camera pose in the last space

exploration iteration to project the robot arm model to the

current frame. Then the projection is used as a prompt to gen-

erate the segmentation mask as Ml = SAM(It ,Π(qt , l;T t−1
cb )),

where Ml is the predicted mask of link l, It is the RGB

image at the current joint pose qt , Π is a projection operation

producing a 2D bounding box for link l, and T t−1
cb is the

camera pose solved in the last space exploration iteration or

the initialized camera pose in the first iteration. Then, we

combine all the masks of the links to obtain the final mask

M. Practically, in addition to link-wise masks, we also use the

2D bounding box of every 2 adjacent links as the prompt to

further improve the mask quality. As shown in Sec. IV-D, this

link-wise prompted SAM can generate superior mask quality

than the previous methods while requiring zero training cost.

E. Eye-In-Hand Camera Pose Optimization

Eye-in-hand calibration is another setting under the hand-

eye calibration problem, in addition to the to-hand setting.

Different from previous eye-in-hand works that rely on a

marker [23], [24] or use a neural network to predict the cam-

era pose [12], we follow the previous work, EasyHeC [19],

which uses a pixel-wise mask loss to optimize the camera

pose. Specifically, the loss function is defined as follows:

L(Tce) =

(

min

(

1,∑
l

π (exp(ξce)TebTbl l)

)

−M

)2

, (2)

where Teb and Tbl are the relative pose between the end-

effector and the robot base and the relative pose between

the robot base and the link l, respectively, computed from

forward kinematics, ξce is exponential coordinate of the

relative pose between the camera and the end-effector, and

M is the observed mask generated by AutoSAM.

(a) (b)

Fig. 3: Example images for our method under the eye-

in-hand setting. (a) is the image captured by the in-hand

camera and (b) is the image captured from the spectator’s

view for illustration.

Because of the nature of the eye-in-hand setting, it is not

guaranteed that the robot arm is visible in the image at a

random joint pose. Thus we propose to use a different joint

pose sampling strategy from the eye-to-hand setting to ensure

the robot arm is visible in the image. Specifically, instead of

sampling the angle of each joint independently as in [19], we

first sample the end-effector pose to ensure the end-effector

is oriented towards the robot base link properly, and then

we compute the joint poses using inverse kinematics. An

example image is shown in Fig. 3.

Moreover, we observe that the gripper often occupies

a large region in the image. This region is usually not

informative for camera pose optimization. Besides, this part

is an edge area with low undistortion quality in the image, so

including this part in optimization could lead to a significant

accuracy drop. To address this problem, we propose to ignore

this region in the optimization process with the following

mask loss:

L(Tce) = ∑
p/∈O

(

min

(

1,∑
l

π (exp(ξce)TebTbl l)

)

−M

)2

p

,

(3)

where p and O are a pixel and the region of the gripper

in the image, respectively.

F. Implementation Details

In the sampling-based pose initialization module, the dis-

tance between the camera and the robot arm is fixed to 1

meter, and the elevation angle is sampled from 0 degrees

to 70 degrees with an interval of 10 degrees. The azimuth

angle is sampled from 0 degrees to 360 degrees with an

interval of 30 degrees. In the feature-matching-based pose

initialization module, we first use image retrieval [39] to find

the image that is the most similar to the target image and

use the feature-matching-based method to initialize the pose.

we use DKM [40] as our feature-matching network since it

handles texture-less and specular robot arm surfaces quite

well. Then we use PnP with RANSAC to solve the pose

of the target image based on the correspondences. Other

hyperparameters in the differentiable-rendering-based pose

optimization and consistency-based joint space exploration

are the same as EasyHeC [19]. For the initial calibration

in the eye-in-hand setting, instead of using the sampling-

based pose initialization module, we manually initialize the

camera pose since this pose usually demonstrates much

smaller variation compared to the eye-to-hand setting. Other

operations remain the same as in the eye-to-hand setting.

IV. EXPERIMENTS

A. Evaluation on Synthetic Datasets

1) Eye-to-Hand Setting: In this section, we evaluate our

method using a synthetic dataset proposed in [19]. The

dataset consists of 100 scenes captured under different

camera poses under the eye-to-hand setting. We conduct

a comparative analysis, evaluating the performance of our

method in comparison to previous approaches. Following the

evaluation protocols in [19], we only evaluate the scenes

where [8] and [15] successfully solve the camera pose.

Tab. I and Tab. II present the evaluation results of rotation

and translation errors, respectively, where our method consis-

tently outperforms previous approaches. Even using a single

view, our method surpasses the performance of the prior

work [19], attributed to the precision of our pose initialization

Despite both EasyHeC [19] and our method using the same



Method #views Rotation error (◦)

Marker-based [8] 20 0.870

DREAM [15] 1 ∼ 5 1.924 1.240 0.981 0.764 0.704

EasyHeC [19] 1 ∼ 5 0.322 0.128 0.109 0.097 0.081

Ours 1 ∼ 5 0.246 0.076 0.064 0.058 0.045

TABLE I: Rotation error evaluation results on the xArm

synthetic dataset.

Method #views Translation error (cm)

Marker-based 20 2.000

DREAM 1 ∼ 5 0.529 0.473 0.374 0.347 0.303

EasyHeC 1 ∼ 5 0.488 0.298 0.252 0.206 0.206

Ours 1 ∼ 5 0.318 0.176 0.159 0.137 0.135

TABLE II: Translation error evaluation on the xArm

synthetic dataset.

differentiable-rendering-based optimization for camera pose

resolution, our approach achieves superior accuracy. This su-

periority is attributed to our method’s utilization of the robot

arm’s kinematics model and a large pre-trained segmentation

model to predict segmentation masks, which proves more

accurate than the masks generated in [19]. Specifically,

our method achieves a translation error of 0.135cm with 5

joint poses, outperforming EasyHeC [19] which records a

0.206cm error under similar conditions.

Method #views Rotation error (◦)

Zhang et al. [23] 10 0.148

Valassakis et al. [12] 1 4.4

Ours 1 ∼ 5 0.685 0.204 0.145 0.130 0.117

TABLE III: Rotation error evaluation results on the xArm

synthetic dataset.

Method #views Translation error (cm)

Zhang et al. [23] 10 0.315

Valassakis et al. [12] 1 1.340

Ours 1 ∼ 5 0.503 0.179 0.128 0.117 0.112

TABLE IV: Translation error evaluation results on the

xArm synthetic dataset.

2) Eye-in-Hand Setting: Similar to the eye-to-hand set-

ting, we evaluate our method on a synthetic dataset under

the eye-in-hand setting and compare it to previous methods.

The evaluation involves 50 different camera poses, and we

simulate the calibration process using SAPIEN [41]. For the

approach proposed in Valassakis et al. [12], we synthesize

10000 images using a xArm7 robot arm and train their

model. For Zhang et al. [23], we reproduce their method with

a chessboard of 4×5 grids with a 5cm grid size and images

captured at 10 different joint poses. Compared to [12], which

trains a neural network to regress the camera pose, our

method not only requires no training but also achieves better

accuracy. Furthermore, in comparison to [23], our method

achieves better accuracy with fewer joint poses.

B. Evaluation on Real Dataset

We conducted a comparative evaluation of our method

against several previous approaches using the real-world

Baxter dataset [18]. This dataset comprises 100 images

captured under the same camera pose but with 20 different

joint poses. The evaluation metrics include the percentage of

correct keypoints (PCK) for both 2D and 3D, as presented

in Tab. V and Tab. VI, respectively. The tables demonstrate

that our method outperforms previous approaches in both

2D and 3D PCK, particularly under small thresholds. For

instance, when using 3 views, our method achieves a 2D

PCK of 0.5 and 0.7 with 10 px and 20 px thresholds,

respectively, compared to only 0.05 and 0.55 for Easy-

HeC [19]. Despite EasyHeC training a segmentation model

on synthetic data with data augmentation, its generalization

to real-world images remains challenging. In contrast, our

method leverages the generalization capability of the pre-

trained image model to predict the segmentation mask. This

not only eliminates the need for time-consuming and intricate

data augmentation during training but also yields superior

mask quality, resulting in higher PCK values.

Method
PCK 2D

10px 20px 30px 40px 50px 100px 150px

DREAM [15] - 0.16 0.23 0.29 0.33 0.52 0.62

OK [16] - 0.34 0.54 0.66 0.69 0.88 0.93

IPE [18] (box) - - - - 0.65 0.94 0.95

IPE [18] (cylinder) - - - - 0.80 0.91 0.93

IPE [18] (CAD) - - - - 0.74 0.90 0.94

EasyHeC (1view) 0.1 0.35 0.55 0.75 0.90 0.95 0.95

EasyHeC (2views) 0.15 0.40 0.75 0.95 1.00 1.00 1.00

EasyHeC (3views) 0.05 0.55 0.85 1.00 1.00 1.00 1.00

Ours (1view) 0.25 0.5 0.75 0.75 0.85 0.95 1.00

Ours (2views) 0.5 0.55 0.9 0.9 0.9 1.00 1.00

Ours (3views) 0.5 0.7 0.85 0.95 1.00 1.00 1.00

TABLE V: 2D PCK evaluation results on the Baxter

dataset. 2D PCK scores are given at different thresholds.

Method
PCK 3D

2cm 5cm 10cm 20cm 30cm 40cm

DREAM [15] 0.01 0.08 0.32 0.43 0.54 0.66

OK [16] 0.10 0.34 0.54 0.66 0.69 0.88

IPE [18] (box) - - 0.8 0.95 0.95 0.95

IPE [18] (cylinder) - - 0.71 0.93 0.94 0.95

IPE [18] (CAD) - - 0.78 0.93 0.97 1.00

EasyHeC (1view) 0.10 0.65 0.90 1.00 1.00 1.00

EasyHeC (2views) 0.15 0.80 0.95 1.00 1.00 1.00

EasyHeC (3views) 0.15 0.80 0.90 1.00 1.00 1.00

Ours (1view) 0.15 0.75 0.95 1.00 1.00 1.00

Ours (2views) 0.2 0.6 0.95 1.00 1.00 1.00

Ours (3views) 0.3 0.65 0.90 1.00 1.00 1.00

TABLE VI: 3D PCK evaluation results on the Baxter

dataset.

Method DREAM EasyHeC EasyHeC (SAM) Ours

Error (cm) 1.5 0.4 0.3 0.3

TABLE VII: Real-world error high-precision targeting

experiment under the eye-to-hand setting.

C. Real-world Evaluations

In addition to the real-world Baxter dataset [18], we evalu-

ated our method under a real-world setup. Our experimenta-

tion involved using a xArm7 robot arm with a RealSense



Method Zhang et al. [23] Valassakis et al. [12] Ours

Error (cm) 1.35 4.30 0.31

TABLE VIII: Real-world error high-precision targeting

experiment under the eye-in-hand setting. Errors are

computed across 10 tipping trails.

camera, positioned either on a nearby tripod or mounted

on the end-effector for the eye-to-hand and eye-in-hand

settings, respectively. After applying our calibration method,

we follow the procedure outlined in previous work [19]

for further evaluation. This involves transforming the corner

of an ArUco marker to the robot base coordinate system,

tipping it, and manually measuring the error between the

tip and corner. The results are presented in Tab. VII and

Tab. VIII, where our method achieves the lowest error in

both settings. In the eye-to-hand setting, it is noteworthy

that both EasyHeC (SAM) and our method utilize the SAM

model for mask prediction. However, they require manually

annotated bounding-box prompts, while our method does not,

enhancing its automation.

D. Ablation Study

Automatic pose initialization. We conducted a compari-

son of different pose initialization methods between Easy-

HeC [19] and our proposed approach. The results are shown

in Tab. IX. EasyHeC trained a PVNet [42] on synthetic

data to initialize the camera pose at the robot arm’s zero

joint pose. Both our sampling-based and feature-matching-

based pose initialization achieve superior accuracy compared

to PVNet. The sampling-based initialization proves robust

to mask quality, while the feature-matching-based method

efficiently utilizes existing calibration results to initialize

the pose. Notably, the sampling-based method demonstrates

higher accuracy but is more time-consuming, requiring the

robot arm to be driven to multiple joint poses, taking

approximately 10 minutes. In contrast, the feature-matching-

based method only requires the robot arm to have the same

joint pose as the images in the database, avoiding the need

for arm movement and proving more efficient.

Method Rot. error (◦) ↓ Trans. error (cm) ↓ Time ↓

EasyHeC (PVNet) 3.94 2.40 10h+/100ms

Ours (Sampling) 0.10 0.26 0/∼10min

Ours (Feat. matching) 2.33 1.80 0/6s

TABLE IX: Ablation study for pose initialization. Er-

rors on the xArm eye-to-hand synthetic dataset. Training

time/inference time are reported on an RTX 4090 GPU.

Different prompts to the SAM model. In this ablation

study, we compare different prompts to the SAM model on

the xArm synthetic dataset. The qualitative and quantitative

results are shown in Fig. 4 and Tab. X, respectively. While

the most straightforward prompt is to use a single bounding

box for the entire robot arm, we observe that this prompt

lacks accuracy, as shown in Fig. 4(a). This is because

the space exploration module tends to produce a contorted

joint pose, making it challenging for the SAM model to

generate precise masks. Additionally, real-world scenarios

may involve occlusions from the table or other objects, as

well as unwanted attachments on the robot arm (e.g., an

in-hand camera), further diminishing the accuracy of the

single bounding box prompt. Combining the single bounding

box prompt with a center point prompt can even lead to

a reduction in accuracy, as depicted in Fig. 4(b). Although

using per-link bounding boxes, as shown in Fig. 4(c) and

Fig. 4(d), can enhance accuracy, it remains somewhat un-

stable, occasionally missing connectors between adjacent

links. The most accurate prompt involves using bounding

boxes for each link and connectors between each pair of

adjacent links, as demonstrated in Fig. 4(e) and Fig. 4(f).

This comprehensive prompt configuration yields the highest

accuracy in generating precise masks.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Ablation study on different types of prompts to

the SAM model. (a) A single bounding box of the whole

robot arm as the prompt. (b) A single bounding box of the

robot arm and its center point as the prompt. (c) Per-link

bounding boxes as the prompt. (d) Per-link bounding boxes

and their center points as the prompt. (e) Bounding boxes of

each link and each connector as the prompt. (f) Bounding

boxes of each link and each connector and their center points

as the prompt. For clarity, we do not show all the prompts

from (c) to (f).

Method Box prompt Point prompt Connector Mask IoU ↑

EasyHeC - - - 96.3

Ours (a) Single w/o w/o 92.3

Ours (b) Single w/ w/o 93.0

Ours (c) per-link w/o w/o 93.7

Ours (d) per-link w/ w/o 94.2

Ours (e) per-link w/o w/ 98.2

Ours (f) per-link w/ w/ 98.2

TABLE X: Mask IoU comparison with different types

of prompts to the SAM model tested on the xArm eye-

to-hand synthetic dataset. EasyHeC costs over 20 hours

for training on an RTX 4090 GPU, while Ours requires no

training. The indication of Roman numerals (a)-(f) are shown

in Fig. 4.

V. CONCLUSION

In this work, we proposed EasyHeC++, which can cal-

ibrate any robot arm in a marker-free, training-free, and

fully automatic manner. Our main approach consists of a

pose initialization phase and a pose optimization phase. By



integrating the generalization ability of pretrained image

models and the accuracy of optimization-based methods,

EasyHeC++ achieves a fully automatic pipeline. Experiments

show that our method produces superior accuracy and degree

of automation in both synthetic and real-world datasets for

different robot arms and camera settings. This work opens

up more possibilities for lab and household applications [1],

[2], [3], [4], [5], [43], [44] that require hand-eye calibration

to reduce the sim-to-real gap, such as robot manipulation and

grasping.
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