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Shape Prior Guided Instance Disparity
Estimation for 3D Object Detection

Linghao Chen∗, Jiaming Sun∗, Yiming Xie, Siyu Zhang, Qing Shuai,
Qinhong Jiang, Guofeng Zhang, Hujun Bao, Xiaowei Zhou

Abstract—In this paper, we propose a novel system named Disp R-CNN for 3D object detection from stereo images. Many recent
works solve this problem by first recovering point clouds with disparity estimation and then apply a 3D detector. The disparity map is
computed for the entire image, which is costly and fails to leverage category-specific prior. In contrast, we design an instance disparity
estimation network (iDispNet) that predicts disparity only for pixels on objects of interest and learns a category-specific shape prior for
more accurate disparity estimation. To address the challenge from scarcity of disparity annotation in training, we propose to use a
statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds, which makes our
system more widely applicable. Experiments on the KITTI dataset show that, when LiDAR ground-truth is not used at training time,
Disp R-CNN outperforms previous state-of-the-art methods based on stereo input by 20% in terms of average precision for all
categories. The code and pseudo-ground-truth data are available at the project page: https://github.com/zju3dv/disprcnn.

Index Terms—Autonomous Driving, 3D Detection, Stereo Matching.
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1 INTRODUCTION

3D object detection plays an important role in many applications
such as autonomous driving and augmented reality. While most
methods work with the LiDAR point cloud as input, stereo image-
based methods have significant advantages. RGB images provide
denser and richer color information compared to the sparse LiDAR
point clouds while requiring a very low sensor price. Stereo cam-
eras are also able to perceive longer distances with customizable
baseline settings.

Recently, learning-based approaches like [1], [2], [3] tackled
the stereo correspondence matching problem with Convolutional
Neural Networks (CNNs) and achieved impressive results. Taking
an estimated disparity map as the input, 3D object detection
methods [4], [5] convert it into a depth map or a point cloud
to detect objects within it.

However, since the disparity estimation network is designed
for general stereo matching instead of the 3D object detection
task, these pipelines have two major drawbacks. First, the disparity
estimation process operates on the full image and often fails to
produce accurate disparities on low textured or non-Lambertian
surfaces like the surface of vehicles, which are exactly the re-
gions we need to do successful 3D bounding boxes estimation.
Moreover, since foreground objects of interest usually occupy
much fewer space than the background in the image, the disparity
estimation network and the 3D detector spend a lot of computation
on regions that are not needed for object detection and lead to a
slow running speed.

In this work, we aim to explore how we can solve these
drawbacks with a disparity estimation module that is specialized
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Fig. 1. The proposed system estimates an instance disparity map,
i.e., pixel-wise disparities only on foreground objects, for stereo 3D ob-
ject detection. This design leads to better disparity estimation accuracy
and faster run-time speed.

for 3D object detection. We argue that estimating disparities on the
full image is suboptimal in terms of network feature learning and
runtime efficiency. To this end, we propose a novel system named
Disp R-CNN that detects 3D objects with a network designed
for instance-level disparity estimation. The disparity estimation
is performed only on regions that contain objects of interest,
thus enabling the network to focus on foreground objects and
learn a category-specific shape prior that is suitable for 3D object
detection. As demonstrated in the experiments, with the guidance
of object shape prior, the estimated instance disparities capture the
smooth shape and sharp edges of object boundaries while being
more accurate than the full-frame counterpart. With the design of
instance-level disparity estimation, the running time of the overall
3D detection pipeline is reduced thanks to the smaller number
of input and output pixels and the reduced range of cost volume
search in the disparity estimation process.

Another limitation of the full-frame disparity estimation is the
lack of pixel-wise ground-truth annotation. In the KITTI dataset
[6] for example, although it is possible to render disparity ground
truth by manually selecting and aligning vehicle CAD models as
in the KITTI Scene Flow benchmark [7], there is no such ground-
truth provided in the KITTI Object Detection benchmark due to
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its difficulty in annotating on a massive scale.
To make dense instance-level disparity supervision possible,

we propose a pseudo-ground-truth generation process that can
acquire accurate instance disparities and instance segmentation
masks via object shape reconstruction and rendering. The object
mesh is reconstructed by a statistical shape model under several
geometric constraints [8], [9]. The effort to manually annotate
CAD models can be saved through this automated process since
the basis of the statistical shape model can be learned directly
from 3D model repositories like ShapeNet [10].

Different from some recent methods [5], [11], [12] that use the
projected LiDAR point clouds as the sparse supervision for full-
frame disparity estimation, our pseudo-ground-truth generation
process can provide dense supervision even when LiDAR is not
available at training time, which has broader applicability in
practice.

We evaluate our system on the KITTI dataset and provide
ablation analysis of the different components of the proposed
system. The experiments show that, with the guidance of the shape
prior introduced by both the network design and the generated
pseudo-ground-truth, the performance of instance-level disparity
estimation surpasses the full-frame counterpart by a large margin.
As a result, 3D object detection performance can be largely im-
proved compared to baseline state-of-the-art 3D detectors that rely
on full-frame disparities. When LiDAR supervision is not used at
training time, our method outperforms the baseline methods by
20% in terms of average precision.

This article is the extension of our conference work [13].
In the conference version, we performed the experiments only
on the car category in the KITTI dataset. Here, we extend our
method to deal with the more challenging pedestrian and cyclist
categories. Pedestrians and cyclists tend to have thinner structures
than cars. Moreover, human bodies are non-rigid and more difficult
to reconstruct. Thus, we propose to fit a statistical human body
model (SMPL [14]) to point clouds and 2D keypoints in images,
yielding 3D mesh models of pedestrians and cyclists, and then
perform the proposed Disp R-CNN pipeline for the pedestrians
and cyclists in the KITTI dataset. The proposed approach achieves
state-of-the-art performance for pedestrians and cyclists, proving
that our method can be generalized to multiple categories.

In summary, our contributions are as follows:
• We propose a novel framework for stereo 3D object detection

based on instance-level disparity estimation, which outper-
forms state-of-the-art baselines in terms of both accuracy and
runtime speed for all categories of the KITTI dataset.

• We propose a pseudo-ground-truth generation process that
provides supervision for the instance disparity estimation
network and guides it to learn the object shape prior that
benefits 3D object detection.

• We release our fitted 3D models of cars, pedestrians, and cy-
clists on the KITTI dataset, which provide richer information
than original bounding box annotations. The code and data
are available at https://github.com/zju3dv/disprcnn.

2 RELATED WORK

In this section, we briefly review the recent progress of 3D object
detection with different modalities of input data and introduce
the background of object shape reconstruction that is used in the
proposed pseudo-ground-truth generation process.

3D object detection with RGB images. Several works con-
centrate on 3D object detection using a monocular image or
stereo RGB images as input. Stereo R-CNN [15] designs a Stereo
Region Proposal Network to match left and right Regions of
Interest (RoIs) and refines 3D bounding boxes by dense alignment.
On the monocular side, [16] proposes to estimate 3D bounding
boxes with relation and constraints between 2D and 3D bounding
boxes. [4] uses a depth map as an extra input channel to assist
3D object detection. Recently, Pseudo-LiDAR [5] converts the
disparity map estimated from stereo images to point clouds as
pseudo-LiDAR points, estimates 3D bounding boxes with LiDAR-
input approaches, and achieves state-of-the-art performance on
both monocular and stereo input.

It is worth noting that, there are two concurrent works OC-
Stereo [17] and ZoomNet [18] that propose the similar idea of
instance-level disparity estimation. OC-Stereo [17] uses depth
completion results from sparse LiDAR points as object-centric
disparity supervision, and ZoomNet [18] prepares a human-
annotated CAD model dataset to achieve a similar purpose. Our
method differs from these above-mentioned works in the disparity
estimation region (on objects vs. on full images) and the automated
dense instance disparity pseudo-ground-truth generation process.

3D object detection with point clouds. A majority of state-of-the-
art 3D object detection methods are based on point clouds captured
by depth sensors (LiDAR or RGB-D camera) [19], [20] as input.
F-PointNet [21] segments the object point cloud within the 2D
RoI frustum into foreground and background and later predicts 3D
bounding boxes with PointNet++ [22]. Recently, PointRCNN [23]
adapts this framework into a two-stage design as in the 2D object
detection counterpart [24] and achieved impressive performance.
The 3D object detector in the proposed pipeline is point cloud
based and can be substituted to other methods that can achieve the
similar purpose.

Object shape reconstruction. 3D object detection can benefit
from shape reconstruction. [9] leverages the constraint that the
point cloud must be lying on the object surface, and jointly
optimizes the object pose and shape with the point cloud generated
from stereo disparities and object shape prior model learned
from the 3D shape repository with PCA. [25] further extents this
pipeline with the temporal kinematic constraints of objects in dy-
namic scenes. [26] proposes a continuous optimization approach
to jointly optimize object shape and pose with the photometric
error. [27] proposes to use the object shape generated from a 3D
auto-encoder in the data augmentation process during the training
of monocular 3D object detection.

For object categories other than vehicles, e.g. humans, SM-
PLify [28] proposes to reconstruct the human body by fitting the
SMPL [14] model to 2D keypoints. [29] further utilizes silhouette
consistency to constraint the SMPL parameters. The PedX dataset
[30] proposes to fit the SMPL model to point cloud data, further
improving the reconstruction quality.

3 METHODS

Given a pair of stereo images, the goal is to detect 3D bounding
boxes of all the object instances of interest. As shown in Fig. 2,
our detection pipeline consists of three stages: we first detect 2D
bounding boxes and instance masks for each object, then estimate
disparities only for pixels belonging to objects, and finally use a
3D detector to predict 3D bounding boxes from the instance point
cloud.
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Fig. 2. Disp R-CNN Architecture. Disp R-CNN has three stages. First, the input images are passed through a Mask R-CNN to detect 2D bounding
boxes and instance segmentation masks. Then, the instance disparity estimation network (iDispNet) takes the cropped RoI images as input and
estimates an instance disparity map. Finally, the instance disparity map is converted to an instance point cloud and fed into the 3D detector for 3D
bounding box regression.

3.1 2D Detection and Association

We start by briefly describing the base 2D detector that provides
necessary input for the following modules of the pipeline. Previous
work [15] designed a stereo variant version of Region Proposal
Network (Stereo RPN) to generate proposals from the same set
of anchors. However, the Stereo RPN requires objects in different
views to have considerable overlaps, thus cannot work well for
objects with thin structures, such as pedestrians and cyclists.

To this end, we propose to detect 2D objects in the left and
right views separately and then perform association. We use the
Mask R-CNN [31] as our 2D detector. Mask R-CNN is composed
of two stages. The first stage is a Region Proposal Network (RPN)
that generates object proposals from a collection of anchors. The
second stage extracts image features using RoIAlign, followed by
prediction heads that produce 2D bounding boxes, classification
scores, and instance segmentation masks.

After 2D objects in the left and right views are detected, we
compute the Structural SIMilarity index (SSIM) [32] between left
and right RoIs to perform association. More information about this
process is given in Sec. 3.5.

3.2 Instance Disparity Estimation Network

The disparity estimation module is responsible for recovering the
3D data in stereo 3D object detection and therefore its accuracy
directly affects the 3D detection performance. Previous work [5]
applies an off-the-shelf disparity estimation module that predicts
the disparity map for all the pixels in the entire image. Since
the area of the foreground objects only takes a small portion of
the full image, most computation in both the disparity estimation
network and the object detection network is redundant and can be
reduced. Moreover, for the specular surfaces on most of the vehi-
cles, the Lambertian reflectance assumption for the photometric-
consistency constraint used in stereo matching cannot hold. To
remedy these problems, we propose a learning-based instance
disparity estimation network (iDispNet) that is specialized for 3D
object detection. The iDispNet only takes the object RoI images
as input and is only supervised on the foreground pixels, so that it
captures the category-specific shape prior and thus produces more
accurate disparity predictions.

Fig. 3. The crop-and-align process aligns the left and right RoIs by
cutting off a global offset. As a result, the instance disparity Di(p)
distributes in a much narrower range compared to the full-frame dis-
parity Df (p), which makes it possible to reduce the disparity search
range when constructing the disparity cost volume and leads to faster
inference.

Formally speaking, the full-frame disparity for a pixel p is
defined as:

Df (p) = ulp − urp, (1)

where ulp and urp represent the horizontal pixel coordinates of p in
the left and right views, respectively. With the 2D bounding boxes
produced by the Mask R-CNN, we can crop the left and right
RoIs out from the full images and align them in the horizontal
direction. The width of each RoIs (wl, wr) are set to the larger
value to make the two RoIs share the same size. Once RoIs are
aligned, the disparity displacement for pixel p on the left image
(reference) changes from full-frame disparity to instance disparity,
which is defined as:

Di(p) = Df (p)− (bl − br), (2)

where bl and br stand for coordinates of the left border of
bounding boxes in two views, respectively. Our goal is essentially
to learn the instance disparity Di(p) instead of Df (p) for each p
belonging to an object of interest. This crop-and-align process is
visually illustrated in Fig. 3.

All the RoIs in the left and right images are resized to a
common size H × W . For all the pixels p that belong to an
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object instance O given by the instance segmentation mask, the
loss function for the instance disparities is defined as:

Lidisp =
1

|O|
∑
p∈O

L1;smooth(D̂
′
i(p)−D′i(p)), (3)

D′i(p) =
Di(p)

max(wl, wr)
W, (4)

where D̂′i(p) is the predicted instance disparity for point p, D′i(p)
is the instance disparity ground-truth, wl and wr represent the
widths of 2D bounding boxes in two views, and |O| means the
number of pixels belonging to the object O.

Once the iDispNet outputs instance disparity D̂′i(p), we can
compute the 3D location for each pixel p belonging to the
foreground as the input of the following 3D detector. The 3D
coordinate (X,Y, Z) is derived as follows:

X =
(up − cu)

fu
Z, Y =

(vp − cv)
fv

Z, (5)

Z =
Bfu

D̂i(p) + bl − br
, (6)

where B is the baseline length between the left and right
cameras, (cu, cv) is the pixel location corresponding to the camera
center, and (fu, fv) are horizontal and vertical focal lengths,
respectively.

3.3 Pseudo Ground-truth Generation

Training stereo matching network requires a large amount of dense
disparity ground-truth, while most of the 3D object detection
datasets [6], [33], [34] don’t provide this data due to its difficulties
in the manual annotation.

The full-frame disparity estimation module used in the recent
works [5], [11] is first pre-trained on synthetic datasets and later
fine-tuned on the real data with sparse disparity ground-truth con-
verted from LiDAR points. Although the detection performance
gained large improvements from this supervision, the requirement
for LiDAR point cloud limits the scaling capability of stereo 3D
object detection methods in the real world scenario due to the high
sensor price.

Benefiting from the design of the iDispNet which only requires
foreground supervision, we propose an effective way to generate
a large amount of dense disparity pseudo-ground-truth (pseudo-
GT) for the real data without the need of LiDAR points. The
generation process is made possible by a category-specific shape
prior model, from which the object shape can be reconstructed
and later rendered to the image plane to obtain dense disparity
ground-truth.

3.3.1 Rigid objects
For some rigid object categories with relatively small shape
variations (e.g. vehicles), we use the volumetric Truncated Signed
Distance Function (TSDF) as the shape representation, and ap-
proximate the TSDF shape space by a low-dimensional subspace
[8], [9]. Formally, denoting the basis of the subspace as V , which
are obtained from the leading principal components of training
shapes, and the mean shape as µ, the shape φ̃ of an instance can
be represented as:

φ̃(z) = V z + µ, (7)

Fig. 4. The object shape reconstruction process for the car cate-
gory.

Fig. 5. The dimension regularization during pseudo-GT generation
penalizes a voxel if it is outside of the 3D bounding box and has a
negative TSDF value, thus enforcing the shape surface to stay inside
the 3D bounding box. From left to right: object shapes without and with
dimension regularization.

where z ∈ RK is the shape coefficients and K is the dimension
of the subspace.

Given the 3D bounding box ground-truth and the point cloud
of an instance, we can reconstruct shape coefficients z for an
instance by minimizing the following cost function:

Lpc(z) =
1

|P |
∑
x∈P

φ(x, z)2, (8)

where φ(x, z) is the trilinear interpolated value of a 3D point
x in the TSDF volume defined by shape coefficients z, P is
the point cloud corresponding to the instance, and |P | is the
number of points in the point cloud. Only z is updated through
the optimization process. Intuitively, this cost function minimizes
the distance from the point cloud to the object surface defined by
the zero-crossing of the TSDF. The point cloud can be obtained
from an off-the-shelf disparity estimation module or optionally
LiDAR points.

Since the cost function above does not restrict the 3D dimen-
sion of object shape, we propose the following dimension regular-
ization term to reduce the occurrence of objects overflowing the
3D bounding box:

Ldim(z) =
∑

v∈V out

max(−φ(v, z), 0)2, (9)

where V out represents all the voxels that are defined outside
of the 3D bounding box in a volume. A visualization of the
dimension regularization is shown in Fig. 5.
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Fig. 6. The human body is reconstructed by jointly fitting the SMPL
model to point clouds and minimizing the reprojection error of 2D
joints.

To restrict the shape coefficients in an appropriate range, the
following regularization term is used to penalize deviations of
optimized shape from mean shape:

Lz(z) =
K∑

k=1

(
zk
σk

)2, (10)

where σk is the k-th eigen value corresponding to the k-th
principal component.

Combining the above terms, the total cost function is

L(z) = w1Lpc(z) + w2Ldim(z) + w3Lz(z). (11)

The overall pipeline for reconstructing cars is visualized in
Fig. 4.

Finally, instance disparity pseudo-GT Di can be rendered
based on the optimized object shape as follows:

Di =
Bfu

π(M(φ̃(z)))
− (bl − br), (12)

where M represents the marching cubes [35] operation that
converts the TSDF volume to a triangle mesh. π represents the
mesh renderer that produces the pixel-wise depth map. Some
examples of the rendered disparity pseudo-GT are visualized in
the third line of Fig. 7.

3.3.2 Non-rigid human bodies
For some non-rigid object categories such as human bodies, we
propose to use the SMPL [14] model as the category-level shape
prior to perform the reconstruction. The reconstruction pipeline is
visualized in Fig. 6.

The SMPL model provides a functionM(θ, β,R, t) that takes
as input the pose parameters θ, the shape parameters β, the
rotation parameters R and the translation parameters t, and returns
the body mesh M ∈ RN×3, and body joints X ∈ Rk×3.

Given an image with 2D keypoints x ∈ Rk×2, point clouds
P ∈ RN×3, we aim to perform the reconstruction by fitting the
SMPL model to point clouds and minimizing the reprojection error
of 3D and 2D keypoints simultaneously. The corresponding cost
functions are defined as follows:

Lkpts(θ, β,R, t) =
k∑

i=1

(π(Xi)− xi)2 (13)

Lpc(θ, β,R, t) =
∑

j∈Ccor

(Mj − Pj)
2, (14)

where π represents projection operation, and Ccor is the set of
corresponding indices between mesh vertices and point clouds,
found by the nearest neighbor between their projections on the
image plane.

Combining the above terms produces the following cost func-
tion:

L(θ, β,R, t) = w1Lkpts + w2Lpc (15)

After optimization, instance disparity pseudo-GT Di can be
rendered as follows:

Di =
Bfu

π(M(θ, β,R, t))
− (bl − br), (16)

where π represents the mesh renderer that produces the pixel-wise
depth map, and M is the body mesh.

Some examples of the rendered disparity pseudo-GT are visu-
alized in the third line of Fig. 8.

3.4 Discussion

Choices on network design. There are two choices for the
iDispNet design: (1) Use only the decoder part of the iDispNet
as a prediction head similar to the mask head in Mask R-CNN.
The RoI feature extracted from the backbone is reused in disparity
estimation and the disparity head is trained end-to-end with the
rest of the network; (2) Crop the RoI images from the original
images, and then feed the cropped images to the encoder-decoder
network of iDispNet. As shown in the Tab. 7 in the experiment
section, the result of (1) is suboptimal compared to (2), so we
choose (2) as the proposed design. We believe the reason behind
this result is related to the different requirements between the tasks
of instance segmentation and disparity estimation.

Disparity estimation requires more fine-grained distinctive
feature representation to make pixel-wise cost volume processing
to be accurate, while instance segmentation is supervised to predict
the same class probability for every pixel that belongs to the
object. By jointly training the end-to-end version of the network,
the backbone has to balance between these two different tasks and
thus causes the suboptimal result.

Choices on the point cloud for pseudo-GT generation. In
general, there are two choices of point cloud usage in the shape
optimization process. The point cloud can be obtained from (1)
the sparse LiDAR point clouds in the dataset with an optional
depth completion step to improve density; (2) the prediction of an
off-the-shelf disparity estimation network trained on other datasets
(e.g. PSMNet trained on the KITTI-Stereo dataset). (1) potentially
gives a more accurate point cloud. But for datasets or application
scenarios without the LiDAR points as optimization target in
Lpc(z), (2) is the only choice. We evaluate and present the results
using both ways separately (titled by ‘Ours (velo)’ and ‘Ours’
relatively in Tab. 1, Tab. 2, Tab. 4 and 5). As later demonstrated in
the results, (2) performs reasonably well without the usage of the
LiDAR point cloud.
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Choices on the cost volume search space. Some works [11],
[36] build depth cost volume in the stereo matching network
instead of traditional disparity cost volume [2], [5], based on the
fact that uniformly sampling in the disparity space is equal to
non-uniformly sampling in the depth space, resulting in sparser
sampling for further pixels and decreased detection accuracy for
further objects. However, we still choose disparity cost volume
in our method as uniformly sampling in the disparity space on
the resized RoIs has a similar effect as the depth cost volume,
especially for further objects. As shown in Sec. 4, our method
produces even better performance than methods using depth cost
volume.

3.5 Implementation Details

2D Detection and Segmentation Network. We use Mask R-
CNN [31] as the 2D detection and segmentation network. The
segmentation mask head is supervised by the pseudo-ground-truth
masks rendered from the object shape. To further encode the
geometry information into the left-right bounding box association,
we model the center disparity and the height of 2D bounding boxes
by linear regression and reject the association between RoIs when
the difference between the observed center disparity and expected
center disparity is over three standard deviations.

iDispNet. Following the setting in [5], we use PSMNet [2] as the
architecture for iDispNet. RoI images are cropped and resized to
224× 224 as the input. During stereo matching, -48 to 48 pixels is
set to be the instance disparities search range, which covers 98%
of the cases according to the statistics for the disparity distribution
across the training set.

3D detection network. PointRCNN [23] is used as the 3D object
detector in our implementation. Different from inputting point
clouds of the entire scene in the conventional approach, we use
the instance point cloud converted from instance disparity as the
input to PointRCNN. The number of input point cloud subsamples
is reduced to 768. We do not use GT-AUG described in the
PointRCNN paper, as each sample is the point cloud of the entire
scene in PointRCNN, while each sample is an instance point cloud
in our method. Other settings of our network remain the same as
the original PointRCNN.

Pseudo-GT generation. To increase the stability of the pseudo-
GT generation process, only points that sit inside of the ground-
truth 3D bounding box are used for optimization. For objects with
less than 10 points, the mean shape is directly used without further
optimization.

For the car category, we select the first five PCA compo-
nents and set the volume dimension to 60 × 40 × 60 following
[9]. The training shapes are obtained from [9], which are 3D
models collected from the Google Warehouse website. During
optimization, loss weights are set as w1 = 10/3, w2 = w3 = 1.
The optimization is achieved by a Levenberg–Marquardt solver
implemented with Ceres [37].

For the pedestrian category, we use an off-the-shelf keypoint
detector HR-Net [38] to detect 2D keypoints. To ensure the
reconstruction quality, we initialize SMPL parameters by per-
forming inference using the pretrained SPIN [39] model. During
optimization, loss weights are set as w1 = 1, w2 = 0.05.

For the cyclist category, we reconstruct the human body and
bicycle separately and then combine them. We use the same

method as the pedestrian category to reconstruct the human body,
and manually select a CAD model for bicycles from ShapeNet [10]
to represent all bicycles in the KITTI dataset. Since point clouds
for the human body and bicycle cannot be separated trivially, we
don’t use point clouds for cyclists. Instead, we simply put the
human body and the bicycle model at the top center and the bottom
center of the 3D bounding box, respectively. Thus we don’t differ
‘Ours’ and ‘Ours (velo)’ for the cyclist category in all experiments.

Training strategy. We train the Mask R-CNN for 20 epochs with
a weight decay of 0.0005, the iDispNet for 100 epochs with a
weight decay of 0.01, and the PointRCNN 360 epochs with a
weight decay of 0.0005. The learning rate is first warmed up to
0.01 and then decreases slowly in all the training processes.

4 EXPERIMENTS

We evaluate the proposed approach on the 3D object detection
benchmark of the KITTI dataset [6]. First, we compare our method
to state-of-the-art methods on the KITTI object detection bench-
mark in Sec. 4.1. Next, we conduct ablation studies to analyze the
effectiveness of different components of the proposed method in
Sec. 4.2. Then, we report the running time of our method in Sec.
4.3. Finally, we provide some failure cases of our method in Sec.
4.4.

4.1 3D Object Detection on KITTI
The KITTI object detection benchmark contains 7481 training
images and 7518 testing images.

To evaluate on the training set, we divide it into the training
split and the validation split with 3712 and 3769 images following
[43], respectively. Objects are divided into three levels: easy,
moderate, and hard, depending on their 2D bounding box sizes,
occlusion, and truncation extent following the KITTI settings.

Evaluation of 3D object detection. We evaluate our method
and compare it to previous state-of-the-art methods on the KITTI
object 3D detection benchmark [6]. We perform the evaluation
using Average Precision (AP) for 3D detection and bird’s eye view
detection.

In Tab. 1, we compare our method with previous state-of-the-
art methods on the validation split using 0.7 and 0.5 as the IoU
threshold for the car category.

PL [5] estimates full-frame disparities, while our iDispNet
predicts disparities only for pixels on objects.

When LiDAR supervision is not used at training time, our
method outperforms PL (AVOD) over 10% AP in all metrics.
Specifically, our method gains over 26.34% improvement for
APbev in the moderate level with an IoU threshold of 0.7.

This huge improvement comes from the pseudo-GT genera-
tion, which can provide a large amount of training data even if
LiDAR ground-truth is not available at training time.

When LiDAR supervision is used at training time, our method
still outperforms previous state-of-the-art methods in most of the
metrics. PL* (P-RCNN) and ours share the same 3D detector, but
our method still obtains better results. Specifically, our method
gains a 10.21% improvement in APbev at the moderate level with
an IoU threshold of 0.7. The reason is that our iDispNet focuses
on the foreground regions and we have much denser training data
via the object shape rendering.

We also evaluate our method for the pedestrian and cyclist
categories on the KITTI validation set using IoU=0.5. As shown
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TABLE 1
3D object detection results for the car category on the KITTI object validation set. LiDAR supervision indicates if the method uses the

sparse LiDAR point cloud as a supervision signal during training. We report the reproduced result for PL (AVOD) since [5] didn’t provide full results
on experiments without LiDAR supervision. The ‘Ours’ version is using PSMNet trained on the KITTI-Stereo dataset to generate pseudo-GT, ‘Ours
(velo)’ is using LiDAR points to generate pseudo-GT, ‘Ours (ms)’ is using the mean shape for all objects to generate pseudo-GT, and ‘Ours (dob)’
is using PSMNet trained on the DrivingStereo dataset to generate pseudo-GT. We also report results that use segmentation mask annotations in
the KINS dataset (grey background), where ‘Ours (flb)’ is training Disp-RCNN using fused LiDAR points instead of pseudo-GT, and ‘Ours (vkb)’ is

training Disp-RCNN using the same disparity pseudo-GT as ‘Ours (velo)’.

Method LiDAR
Supervision

KINS
mask

APbev (IoU=0.7) AP3d (IoU=0.7) APbev (IoU=0.5) AP3d (IoU=0.5)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

TL-Net [40] N N 29.22 21.88 18.83 18.15 14.26 13.72 62.46 45.99 41.92 59.51 43.71 37.99

S-RCNN [15] N N 68.50 48.30 41.47 54.11 36.69 31.07 87.13 74.11 58.93 85.84 66.28 57.24

IDA-3D [41] N N 70.68 50.21 42.93 54.97 37.45 32.23 88.05 76.69 67.29 87.08 74.57 60.01

PL (AVOD) N N 60.7 39.2 37.0 40.0 27.4 25.3 76.8 65.1 56.6 75.6 57.9 49.3

Ours (ms) N N 75.15 62.90 49.64 59.40 44.95 38.12 90.49 80.37 71.15 89.72 79.03 69.79

Ours (dob) N N 76.15 63.33 55.28 60.20 44.78 42.46 90.21 86.91 70.90 89.79 78.82 69.90

Ours N N 77.89 65.54 57.01 63.97 51.50 44.15 90.65 87.75 78.82 90.27 79.83 70.69

PL* (FP) Y N 72.8 51.8 44.0 59.4 39.8 33.5 89.8 77.6 68.2 89.5 75.5 66.3

PL* (AVOD) Y N 74.9 56.8 49.0 61.9 45.3 39.0 89.0 77.5 68.7 88.5 76.4 61.2

PL* (P-RCNN) Y N 73.4 56.0 52.7 62.3 44.9 41.6 88.4 76.6 69.0 88.0 73.7 67.8

OC-Stereo Y N 77.66 65.95 51.20 64.07 48.34 40.39 90.01 80.63 71.06 89.65 80.03 70.34

ZoomNet - N 78.68 66.19 57.60 62.96 50.47 43.63 90.62 88.40 71.44 90.44 79.82 70.47

PL++ (P-RCNN) Y N 82.0 64.0 57.3 67.9 50.1 45.3 89.8 83.8 77.5 89.7 78.6 75.1
Ours (velo) Y N 77.85 66.21 57.78 69.92 53.81 46.70 90.58 87.74 78.86 90.31 79.95 70.91

Ours (flb) Y Y 77.47 66.06 57.76 70.11 54.43 47.40 90.49 87.57 71.52 90.30 80.07 70.99

Ours (vkb) Y Y 83.29 66.18 57.60 70.18 54.72 46.99 97.20 87.92 71.71 90.33 87.06 71.15

TABLE 2
3D object detection results for the pedestrian category on the

KITTI object validation set. LS stands for LiDAR supervision.

Method LS
APbev (IoU=0.5) AP3d (IoU=0.5)

Easy Mod. Hard Easy Mod. Hard

PSMNet+AVOD Y 36.68 30.08 23.76 27.39 26.00 20.72

PL*(FP) Y 41.3 34.9 30.1 33.8 27.4 24.0

OC-Stereo Y 44.00 37.20 30.39 34.80 29.05 28.06

Ours N 48.46 36.60 33.99 40.43 33.03 27.05

Ours (velo) Y 50.70 38.33 35.50 43.87 36.26 29.81

TABLE 3
3D object detection results for the cyclist category on the KITTI

object validation set.

Method LS
APbev (IoU=0.5) AP3d (IoU=0.5)

Easy Mod. Hard Easy Mod. Hard

PSMNet+AVOD Y 36.12 22.99 22.11 35.88 22.78 21.94

PL*(FP) Y 47.6 29.9 27.0 41.3 25.2 24.9

OC-Stereo Y 48.2 27.9 26.96 45.59 25.93 24.62

Ours N 61.60 36.89 35.07 55.98 33.46 29.51

in Tab. 2 and Tab. 3, our method outperforms the previous
state-of-the-art method for all metrics. Note that even if LiDAR
supervision is not available, our method still achieves comparable
results.

Several works such as [15] and [18] didn’t evaluate their
methods on these two categories because their methods are spe-
cially designed for the car category. However, our method is not
restricted by the category as long as an appropriate statistical shape

TABLE 4
3D object detection results on the KITTI object test set. We report
Average Precision of bird’s eye view (APbev) and 3D boxes (AP3d) for
the car category. ‘Ours (velo)’ uses the sparse LiDAR point cloud as

supervision, while ‘Ours’ doesn’t.

Method
APbev (IoU=0.7) AP3d (IoU=0.7)

Easy Mod. Hard Easy Mod. Hard

TLNet 13.71 7.69 6.73 7.64 4.37 3.74

S-RCNN 61.67 43.87 36.44 49.23 34.05 28.39

IDA-3D 61.87 42.47 34.59 45.09 29.32 23.13

PL* (FP) 55.0 38.7 32.9 39.7 26.7 22.3

PL* (AVOD) 66.83 47.20 40.30 55.40 37.17 31.37

ZoomNet 72.94 54.91 44.14 55.98 38.64 30.97

OC-Stereo 68.89 51.47 42.97 55.15 37.60 30.25

PL++ 78.31 58.01 51.25 61.11 42.43 36.99

Ours 79.61 57.98 47.09 67.02 43.27 36.43

Ours (velo) 79.76 58.62 47.73 68.21 45.78 37.73

prior model is available.
Tab. 4, Tab. 5, and Tab. 6 compare our method with previous

state-of-the-art methods and several concurrent works on the
KITTI test set. Comparing with previous methods, our method
achieves state-of-the-art performance in many metrics. Specifi-
cally, for the car category, our method gains 12.93% and 11.42%
improvement in APbev at the easy and moderate levels, re-
spectively, and 12.81% improvement in AP3d at the easy level,
comparing to the previous state-of-the-art PL* (AVOD). Among
concurrent works, OC-Stereo [17] and ZoomNet [18] share a
similar idea with ours. OC-Stereo utilizes LiDAR points after
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Fig. 7. Qualitative results for the car category on the KITTI object validation set. The rows from top to bottom present 3D bounding box
prediction, instance disparity estimation, and our disparity pseudo-ground-truth, respectively.

TABLE 5
3D object detection results for the pedestrian category on the

KITTI object test set.

Method LS
APbev (IoU=0.5) AP3d (IoU=0.5)

Easy Mod. Hard Easy Mod. Hard

RT3DStereo N 4.72 3.65 3.00 3.28 2.45 2.35

PL*(FP) Y 31.3 24.0 21.9 29.8 22.1 18.8

PL* (AVOD) Y 27.5 20.6 19.4 25.2 19.0 15.3

OC-Stereo Y 35.12 23.23 22.56 28.14 21.85 20.92

Ours N 42.72 29.12 25.09 35.75 25.40 21.79

Ours (velo) Y 40.21 28.34 24.46 37.12 25.80 22.04

TABLE 6
3D object detection results for the cyclist category on the KITTI

object test set.

Method
APbev (IoU=0.5) AP3d (IoU=0.5)

Easy Mod. Hard Easy Mod. Hard

RT3DStereo [42] 7.03 4.10 3.88 5.29 3.37 2.57

PL*(FP) 4.1 3.1 2.8 3.7 2.8 2.1

PL* (AVOD) 13.5 9.1 9.1 13.3 9.1 9.1

OC-Stereo 34.77 22.26 21.36 32.66 21.25 19.77

Ours 44.19 27.04 23.58 40.05 24.40 21.12

completion as supervision, and ZoomNet introduces fine-grained
annotations to generate the ground-truth. Instead, our pseudo-
GT is rendered from the optimized object shape, which is more
accurate than OC-Stereo and more efficient than ZoomNet, leading
to better performance on the KITTI test set. Compared to PL++
[11] which uses depth cost volume, our method still outperforms
it for nearly all metrics. Specifically, our method outperforms
PL++ [11] by 7.1% and 3.35% at the easy and moderate levels
in AP3d, respectively. This is because our iDispNet can predict
more accurate disparity with the guide of object shape prior. More
remarkably, our method achieves state-of-the-art performance
even if LiDAR supervision is not used at training time, which
further shows that our method is robust and applicable in real-
world applications. For the pedestrian category, our method gains
15.22% improvement in APbev at the easy level comparing to
previous state-of-the-art PL* (AVOD). For the cyclist category,
our method gains 30.69% improvement in APbev at the easy
level. Note that ‘Ours’ outperforms ‘Ours (velo)’ for the pedestrian

Fig. 8. Qualitative results for pedestrian and cyclist categories on
the KITTI object validation set. The rows from top to bottom present
3D bounding box prediction, instance disparity estimation, and our dis-
parity pseudo-ground-truth, respectively.

TABLE 7
Disparity EPE and Depth RMSE comparison, evaluated on the KITTI
validation set for the car category. We use our disparity pseudo-GT and

sparse LiDAR as ground-truth for evaluation, denoted by PGT and
LiDAR respectively.

Method GT
Pixel-wise Object-wise

Disparity Depth Disparity Depth

PSMNet PGT 1.53 0.54 0.87 1.00

Ours (e2e) PGT 1.22 0.41 0.76 0.86

Ours PGT 0.90 0.28 0.38 0.33

PSMNet LiDAR 1.01 0.64 1.27 1.28

GANet LiDAR 0.89 0.63 1.23 1.24

Ours LiDAR 1.32 0.60 1.27 1.06

category on the test set by a small margin, especially for APbev .
The reason is that the LiDAR points on the human body are very
sparse and inaccurate.

We visualize some qualitative results of object detection,
instance disparity estimation, and disparity pseudo-GT in Fig. 7
and Fig. 8.

4.2 Ablation Studies

In this section, we conduct extensive ablation experiments to
analyze the effectiveness of different components in our method.

2D Detection. To analyze the effectiveness of our association
method in the 2D detection process, we compare our results and
Stereo R-CNN [15] for the pedestrian category on the KITTI
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TABLE 8
2D Detection AP, evaluated on the KITTI validation set for the

pedestrian and cyclist categories using 0.5 as IoU threshold. We report
the reproduced results for Stereo R-CNN since [15] does not perform

experiments for the pedestrian and cyclist categories.

Method
Pedestrain Cyclist

Easy Mode. Hard Easy Mode. Hard

S-RCNN 58.90 51.43 44.59 65.73 46.92 45.16

Ours 68.80 64.11 56.13 71.17 52.54 50.82

validation set. As shown in Tab. 8, the proposed association
method outperforms Stereo R-CNN by a large margin in terms
of 2D detection AP. As claimed in Sec. 3.1, Stereo R-CNN is
designed for wide objects, such as cars, thus misses lots of objects
with thin structures, such as pedestrians and cyclists.

Dimension regularization for shape optimization. To measure
the effectiveness of the dimension regularization in the shape
optimization process, we perform optimization processes with and
without dimension regularization, and then compute the percent-
age of objects that have more than 70% vertices locating inside the
3D bounding box. Our experiments show that the use of dimension
regularization makes the above percentage rise from 71% to 82%,
which proves that considering dimension regularization can reduce
the occurrence of shape overflowing the 3D bounding box, thereby
improving the quality of the object shape and the pseudo-GT.

Instance disparity estimation. To validate the benefit of instance
disparity estimation, we compute the disparity end-point-error
(EPE) and depth RMSE for our iDispNet and some full-frame
deep stereo networks in the foreground area.

In addition to the pixel-wise error, we also calculate the object-
wise error, which is defined as the average error within each
instance, and then averaged among instances. We believe that
the object-wise error is more suitable to reflect the quality of
disparity estimation for each object because the pixel-wise error is
dominated by objects with large areas.

The results are shown in Tab. 7. We use the pseudo-GT and
sparse LiDAR as ground-truth separately, denoted by PGT and
LiDAR. PSMNet and GANet are trained on the KITTI Stereo
dataset, while our iDispNet is trained with the pseudo-GT.

With the pseudo-GT as ground-truth, our iDispNet reaches
smaller disparity and depth errors than the full-frame PSMNet by
a large margin. With sparse LiDAR points as ground-truth, our
iDispNet still performs better than the full-frame method PSMNet
and the state-of-the-art deep stereo method GA-Net [3], especially
for the object-wise depth RMSE error.

Comparing the second and third lines in Tab. 7 shows that re-
using the features extracted from the RPN limits the quality of
estimated disparity maps, which leading the end-to-end version of
the iDispNet to give sub-optimal results, so we don’t report results
of the end-to-end version in other experiments.

Some qualitative results of instance disparity estimation and
the comparison against the full-frame disparity estimation are
shown in Fig. 9. The full-frame PSMNet cannot capture the
smooth surfaces and sharp edges of vehicles, thus leading the
following 3D detector to struggle to predict correct bounding
boxes from inaccurate point clouds. In contrast, our iDispNet gives

TABLE 9
Running time comparison. S-RCNN represents Stereo R-CNN [15].

Method S-RCNN PL (AVOD) PL (PRCNN) PL (FP) Ours

Time (ms) 417 510 510 670 387

more accurate and stable predictions thanks to instance disparity
estimation and the supervision from the disparity pseudo-GT.

The necessity of supervising the iDispNet using rendered
disparity maps. To validate the necessity of supervising the
iDispNet using rendered disparity maps, we fuse multi-frame
LiDAR point clouds, produce denser disparity maps, and train
the Disp R-CNN. We also use segmentation mask annotations
provided by the KINS dataset [44] in this experiment, represented
as ‘Ours (flb)’. To make a fair comparison, we also train the
Disp R-CNN using segmentation mask annotations provided by
the KINS dataset and rendered disparity pseudo-GT, represented
as Ours ‘(vkb)’ in Tab. 1. As shown in Tab. 1, training with fused
LiDAR points reaches lower performance than ‘Ours (vkb)’. The
reasons are as follows. 1) Fusing LiDAR point clouds requires 3D
bounding box tracklet annotations. However, only 61.8% images
in the KITTI object dataset are annotated with tracklets. 2) LiDAR
points on transparent surfaces such as glasses cannot be captured
in any frame and thus remain low-density after fusion. Thus, we
find it better to supervise the iDispNet using rendered disparity
maps instead of fused LiDAR point clouds.

The necessity of using instance-specific shape. To validate the
necessity of using a different shape for each instance, we generate
pseudo-ground-truth by using the mean shape for all the instances
in the car category as an ablation, represented by ‘Ours (ms)’.
The results are shown in Tab. 1, where ‘Ours (ms)’ reaches a
lower performance than ‘Ours’, especially at the hard level and
when 0.7 is used as the IoU threshold. If we use the average
shape to supervise the iDispNet, the predicted disparity will not
be accurate enough, thus making the following 3D detector to
struggle to predict correct 3D bounding boxes from inaccurate
point clouds.

Point cloud generation for pseudo-GT. In the ‘Ours’ version, we
generate pseudo-GT using a PSMNet trained on the KITTI-Stereo
dataset, which is in the same domain as the KITTI object dataset.
To validate the cross-domain generalization of our method, we
generate pseudo-GT using point cloud predicted by a PSMNet
trained on the DrivingStereo dataset [45] as the supervision to the
iDispNet. The results are listed in Tab. 1, represented by ‘Ours
(dob)’. Compared to the ‘Ours’ version, the results drop a little,
but still outperform previous methods by a large margin.

4.3 Running Time

Tab. 9 shows the running time comparison of our method and other
stereo methods. Our method takes 387ms at inference time on
average on the KITTI dataset, surpassing all prior stereo methods.
Specifically, our method takes 190ms for the 2D detection and
segmentation, 87ms for the instance disparity estimation, and
110ms for the 3D detection from the point cloud. The efficiency
is attributed to estimating only the disparity in RoIs and only the
3D bounding boxes from the instance point clouds, which greatly
reduces the search space.
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TABLE 10
Detection precision using iDispNet with different disparity search
ranges and RoI input sizes. APbev and AP3d are reported for the car

category on the KITTI validation set using 0.7 as IoU threshold.

Disparity
range Input size

APbev (IoU=0.7) AP3d (IoU=0.7)
Easy Mod. Hard Easy Mod. Hard

-48 ∼ 48 224 × 224 77.85 66.21 57.78 69.92 53.81 46.70

-16 ∼ 32 224 × 224 76.64 63.76 55.73 63.28 51.31 44.05

-24 ∼ 24 112 × 112 76.49 63.26 55.41 63.92 47.05 44.14

Fig. 9. Qualitative comparison of disparity estimation results be-
tween PSMNet and our iDispNet. 3D ground-truth bounding boxes are
shown in red. Disparity error maps are shown as well, where the larger
value indicates the worse disparity.

To further boost the running speed of our method, we perform
experiments using different disparity search ranges and RoI input
sizes for the iDispNet. The running time of the iDispNet and the
detection performance are in Fig. 11 and Tab. 10, respectively.
Although the running time depends on the number of detected
objects, the iDispNet runs faster than the full-frame PSMNet,
especially using a narrower disparity search range and smaller
RoI input size, while maintaining comparable performance at the
same time as visualized in Fig. 12.

(a) (b) (c)

Fig. 10. Failure cases. The ground-truth bounding boxes and the
pseudo-GT point clouds are visualized in red, while the predictions are
visualized in green.

Fig. 11. Running time comparison between PSMNet and iDispNet.
iDispNet is tested with different disparity search ranges and RoI input
sizes. Texts in the legend from left to right: model, disparity search range
and input size.

Fig. 12. Speed-accuracy trade-off on the KITTI validation set. AP3d

using 0.7 as IoU threshold is reported in the moderate level for the car
category on the KITTI validation set. Ours uses different disparity search
ranges and RoI input sizes, while PL uses different 3D detectors.

4.4 Failure Cases
We visualize some failure cases in Fig. 10. Our 3D object detection
method is most likely to fail on objects that are too far away as
shown in Fig. 10(a), or under strong occlusion or truncation as
shown in Fig. 10(b). The reason is that there are too few 3D points
on these objects for the detector to predict the correct bounding
boxes. Our pseudo-GT generation is most likely to fail on objects
with unusual shapes, such as the car in Fig. 10(c) which is much
shorter than other cars. Since there are very few examples with
this kind of shape in the CAD model training set, so it is difficult
to reconstruct these types of cars with the statistical shape model.

5 CONCLUSION

In this paper, we proposed a novel approach for 3D object
detection from stereo images. The key idea is to estimate instance-
level pixel-wise disparities only in detected 2D bounding boxes
and detect objects based on the instance point clouds converted
from the instance disparities. To solve the scarcity and sparsity
of the training data, we proposed to integrate shape prior learned
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from CAD models to generate pseudo-GT disparity as supervision.
Experiments on the 3D detection benchmark of the KITTI dataset
showed that our proposed method outperformed state-of-the-art
methods by a large margin for all categories, especially when
LiDAR supervision was not available at training time.
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